
MATH2050C Assignment 8

Deadline: March 14 , 2018.

Hand in: 4.1 no. 11b, 12d, 15; 4.2 no. 1c, 11d, 12. Supp; Ex. no. 3.

Section 4.1 no. 7, 8, 9bd, 10b, 11b, 12bd, 15.

Section 4.2 no. 1, bc, 11 cd, 12.

Supplementary Exercises

1. Let f be function defined on (a, b) except possibly at x0 ∈ (a, b). It is has a right hand
limit at x0 if there exists some L such that for all ε > 0, there exists some δ > 0 such
that |f(x) − L| < ε for all x ∈ (x0, x0 + δ) ∩ (a, b). Denote it by L = limx→x+

0
f(x).

Similarly we define the left hand limit of f at x0 and denote it by limx→x−
0
f(x). Show

that limx→x0 f(x) exists if and only if both one-sided limits exist and are equal.

2. Let f be defined on (a, b) possibly except x0 ∈ (a, b). Show that limx→x0 |f(x)| = |L|
whenever limx→x0 f(x) = L.

3. Let f be defined on (a, b) possibly except x0 ∈ (a, b). Suppose that limx→x0 f(x) = L for
some L. Show that limx→x0

√
f(x) =

√
L provided f ≥ 0 on (a, b). Suggestion: Consider

L > 0 and L = 0 separately.
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Comments on Limits of Functions

Let x0 ∈ (a, b) and f a function defined on (a, b), possibly except at x0. In this chapter we
only consider two kinds of limits, first limx→x0 f(x) and second limx→x+

0
f(x) or limx→x−

0
f(x)

(one-sided limit). In Text the limit at a cluster point is discussed. However, these two special
cases suffice for all later development.

There is a localization principle hidden behind the discussion. Let us single it out. The proof
follows easily from the definition of the limit of functions.

Proposition 8.1 (Localization Principle) Let x0 ∈ (a, b) and f a function defined on (a, b),
possibly except at x0. Let (c, d) \ {x0} be another interval on which f is also defined. The
existence and limit of f regarded as a function on (a, b) \ {x0} are the same as the existence and
limit of f regarded as a function on (c, d) \ {x0}.

The Squeeze Theorem is very often used in the following form.

Theorem 8.2 (Squeeze Theorem) Let f and g defined on (a, b) \ {x0}. Suppose that there
exists an interval (x0 − δ0, x0 + δ0) ⊂ (a, b) such that

|f(x)− L| ≤ g(x) , ∀x, 0 < |x− x0| < δ0 .

Then limx→x0 f(x) = L if limx→x0 g(x) = 0.

Proof. It suffices to look at the equivalent form

−g(x) ≤ f(x)− L ≤ g(x) ,

and apply the localization principle to (x0 − δ, x0 + δ) instead of (a, b).

We note the following result.

Theorem 8.3. Let f be defined on (a, b) possibly except x0 ∈ (a, b). Suppose there exists some
L such that for every ε > 0, there is some δ such that

|f(x)− L| < Mε , ∀x, 0 < |x− x0| < δ ,

where M is a constant independent of ε. Then limx→x0 f(x) = L.

Proof. Let ε > 0 be given. For ε′ = ε/M which is again a positive number, there is some δ
such that |f(x)− L| < Mε′ = ε for all x, 0 < |x− x0| < δ, so limx→x0 f(x) = L.

Finally, we summarize ways to establish convergence, that is, the existence of limits of functions:

• Use ε-δ definition,

• Use Limit Theorem,

• Use Squeeze Theorem.

There are two ways to establish divergence, that is, the non-existence of limits:
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• f(x) becomes unbounded near x0,

• There exist two sequences tending to x0 with different limits.


